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Tilted sandpiles, interface depinning, and earthquake models
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A model of a slowly tilted one-dimensional sandpile with dynamically varying critical slopes is studied. The
energy dissipation events are found to be power-law distributed with experehtl1+0.02 and obey finite
size scaling. The model represents a different universality class than the corresponding point driven models.
However, the finite size scaling expondhiand the surface roughness exponent are the same for both driving
conditions. The pile height exhibits periodic oscillations, but the oscillation period measured in tilt events
diverges as system size increases because the average tilt increment between avalanches is inversely propor-
tional to system size. We demonstrate that the model can be mapped onto a slowly driven interface depinning
model and a one-dimensional spring-block model with dynamically varying friction thresholds, supporting a
broad universality relating different models of self-organized critical phenoni&i863-651X99)12802-2

PACS numbd(s): 64.60.Ht, 05.40-a, 05.70.Ln

[. INTRODUCTION [13], were well described by the Oslo model sandpilg].
However, the model did not reproduce the exponent of the
Slowly driven granular systems, such as slowly tiltedavalanche distribution. In the Oslo model the pile is repre-
piles of sand, have served as useful examples to illustrateented by a sequence of columns. If the local slope exceeds a
how some slowly driven dissipative systems evolve into ecritical value that depends on the local packing configura-
stationary state characterized by power-law fluctuations irion, the column topples. The grain is transferred to the next
the state variables. The self-tuning of the system to a criticatolumn and a new, random value of the critical slope is
state was termed self-organized criticai§OQ [1,2], and  chosen, representing a new local packing configuration. The
models based on similar ideas have been used to descrif¥slo model can be directly extended to study a slowly tilted
power-law fluctuations in phenomena such as earthquakesystem. It is not an entirely realistic model of a tilted granu-
[3], evolution[4], and interface growtf6]. Recently, a direct lar pile, since in a real pile also the orientations of the grains
mapping between models of different physical phenomenand therefore the packing stabilities change when the pile is
has demonstrated a broad universality relating sandpile modited. However, such a model is interesting from a theoreti-
els, interface depinning models, and earthquake train modefzl point of view, because a change in driving conditions is
[6,7] provided specific boundary and driving conditions wereexpected to change the scaling behavior of the model.
applied. It is important to develop similar correspondences Tilted granular piles have been studied extensively both
also for other models and driving conditions in order to un-experimentally and theoretically. In addition to the experi-
derstand the connection between self-organized critical bement by Jaegeet al [10], similar results were found by
havior in different systems. In this article we study a simpleBretz et al. [14] by tilting a box of grains. The transition to
model of a slowly tilted sandpile and show that the behaviomvalanche behavior with rotation speed has also been ad-
is equivalent to the behavior in uniformly driven interface dressed 15]. However, no systematic experimental studies
depinning models[8] and one-dimensional Burridge- of the internal avalanches have been performed to establish
Knopoff [9] earthquake models with dynamically varying or contradict a scaling behavior. Theoretical studies have
static friction coefficients. been made based on a continuum descripfib®,17), on
One of the first experiments to study the applicability of grain simulationg18], and on cellular modelgl9]. The ob-
SOC to granular systems was performed by slowly rotating @erved behavior depended on the modeling approach, but the
semicylinder half filled with grain§10]. The distribution of applicability of the models cannot be evaluated without a
grains flowing out of the system clearly did not support acomparable experimental study.
power-law interpretation, and the system was characterized We have applied the Oslo model to study a slowly tilted
by a periodic cycling between two angles, which was inter-pile of grains. The Oslo model has an indirect experimental
preted as inconsistent with the hypothesis of SOC. The exdasis because it reproduces features of slowly driven piles of
periments, however, did not address the potential energy afce. The tilted sandpile model produces power-law distrib-
the system, which is the quantity expected to display poweruted energy dissipation events with an exponenstl.11
law fluctuations. The internal dynamics were first measuredt:0.02. This indicates that the model is in a different univer-
with sufficient resolution for piles of ricgf11]. Self- sality class than the point driven Oslo model. However, the
organized critical behavior was observed for long-grainedscaling of the active zone and the finite size scaling exponent
rice, but a characteristic avalanche size appeared for roundare the same for both models. The height of the pile displays
rice, indicating that SOC may be relevant for the descriptiorperiodic fluctuations with a constant period of one measured
of granular systems, but it is not the universal behavior. in the total tilt of the pile, but the period increases linearly
Several features of the rice pile experiments, such as theith system size when measured in units of tilt events. We
distribution of transit timeg12] and the surface roughness show that the model can be mapped onto a uniformly driven
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interface depinning model and a one-dimensional earthquake

model with dynamically varying frictional thresholds, a ]
thereby confirming a broad universality between these self-
organized critical phenomena. ) 1
=
IIl. TILTED SANDPILE MODEL 1

The tilted sandpile model is defined in terms of the local
slopes of the pile surface;, at positions ranging from the 108
top of the pile ai =1 to the outlet at=L+ 1. The height of
the pile at a positiom is given by the sum of local slopes. A 1001 :
column becomes unstable and topples if the local slope ex- 104 e b |
ceeds a critical valug® . During toppling, a new value far® 5 02l ]
is chosen, and a grain is transferred down the pile, resulting = 9
in a redistribution of slopeszi—z—2,zj-1—Zz+1+1. = 1(32' 1
Grains that move out of the piléo positioni=L+1) are & 1077 1
removed. All unstable neighbors are also toppled, and the 1074} . .
process is repeated until all sites are stable. The toppling 10® < 1 - " 5
dynamics is identical to the Oslo model sandpil€], how- 10 10 513-2-25 10 10

ever, the driving conditions are different for the tilted model.
A slow tilting is implemented by a gradual, uniform increase  FiG. 1. A plot of the probability densitP(E,L) for an energy

of all slopes until a site becomes unstable and topples. Alliissipation evenE in a system of sizé. (a) shows a direct plot for
subsequent topplings are resolved before the system is tiltad=50, 100, 200, and 40@b) shows a finite size scaling data col-
again, ensuring that the pile is infinitely slowly driven. The lapse on the fornP(E,L)=L " #f(EL™").

values of the critical slopes are real numbers chosen ran-

domly between 1 and 2. A change in the range of the criticalalue found by direct measurement. Another scaling relation
slopes only implies a rescaling of the vertical axis and doegan be found from the average energy dissipatiij. For a

not produce a significant change in behavior. pile tilted at an angleSz<z, wherez s the slope of the pile,

The avalanche behavior of the system is characterized bijhe energy increase is proportional daL®. In a stationary
the energy dissipatiok, the number of grains leaving the state, the average energy increment must equal the average
system,D, called the drop number, and the duration of thedissipated energy{E)«=(5z)L3. The average slope incre-
avalanches measured as the number of generations of togrents can be calculated exactly if we assume zfiatz; are
pling events,T. The temporal development of the system isindependent random variables with a uniform distribution
characterized by the slope incremeats between each ava- (see, for example, Ref21] for detail§ giving (Sz)yocL™L,
lanche. The system has two time scales, the timeeasured e expect a similar behavior for the tilted pile and show
in the number of tilt events, and the total #(t), further on that this is indeed observed for the simulated pile.

. The average dissipated energy can also be calculated from
720=3 52 0 the scaling form oP(E,L):(E)=L?""#. The stationarity of
s B the pile therefore implies thati2- 8=2. This is consistent
with the results found for the data collapse. The power-law
The spatiotemporal development of the pile is studiedexponent can be found directly from
through the time development of the height figldt) as a
function of both timet, and total tiltZ(t).

Figure Xa) shows a plot ofP(E,L), the probability den-
sity for energy dissipation events in a system of size..
The distribution is consistent with a power law with a finite ~ Figure 2 shows a finite size scaling plot of the distribution
size cutoff that increases systematically with The finite ~ of drop eventsP(D,L), for different system sizes. The ex-
size scaling plot in Fig. () shows that the density can be
written on a scaling form

=1.11+0.02. 3)

T=

P(E,L)=L #f(EL™"), 2)

wheref(x) is a power lawx ™7 for x<<xy and a cutoff func-
tion for x>X,. The best data collapse was found f6r
=2.5+0.03 andv=2.25+ 0.03. For the largest system size, ~

the power-law exponent was found to e 1.10+0.03. The 106 ‘ ‘ . .

finite size scaling exponents and the power-law exponent are 00 05 10 L5 20 25

related through scaling relations. The normalization of the DL

probability density implies thg8>» and thatr=g/v. The FIG. 2. A scaling data collapse plot of the probability density

finite size scaling collapse therefore implies that the powerp(D,L) for a drop event of sizd® in a system of size for L
law exponent isr=1.11+0.02, which is consistent with the =50, 100, 200, and 400.
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FIG. 3. A plot of the probability of a drop evenpg.,, as a FIG. 5. A finite size scaling plot of the probability density

function of system sizé&. The behavior is consistent with a power P(5z,L) for the slope increment to béz between two successive
law with exponenté,=0.25+0.05 as illustrated with the dotted avalanches in a system of sikefor L=50, 100, 200, and 400.
line.

where f,(x) is approximately an exponential function, and

ponents that produced the best data collapse wege the best data collapse is obtained {8§=»,=—1.0=0.1,
=1.25+0.03 andvp=1.25+0.03. The distribution is ap- Which implies that 5z L "z, consistent with the predictions
proximately consistent with an exponential distribution. Theabove. Since the average slope increment decreases with sys-
finite size scaling exponent, is related to the exponent for tem size, the two time scalésndZ(t) also change relative

the energy dissipation eventsy=vr—1, as expected from t0 each other when the system size is increased. The number
simulations of similar modelg20]. It is important to realize  Of time stepst, needed to increase the slope by one is pro-
that P(D,L) is a conditional probability density and repre- portional to the system size

sents the probability of a drop of siZ2 given that a drop The dynamical evolution of the pile is characterized by
occurs. The probability of the drop event is a decreasinghe temporal development of height of the profiéx.t,L),
function of L. Figure 3 shows that the probability of a drop as shown in Fig. 6 fox=L/2. The height(x=L/2t,L) is
eventpy,, decreases as a power law with system gigg,  an intermittent signal Wlth_ a variety of small and_ large
xL "¢, whereép=0.25+0.05. changes. However, the variation of the curve is restricted by

The avalanches were also characterized by the duration & length scale that depends on the system size. This depen-
ava|anchesy measured as the number of topp“ng Cyfles' denC.e is characterized by the tWO-pOint time correlation
This is, however, an artificial time scale, since the relaxatiorfunction
dynamics does not include a coupling to a physical time
scale through Newton’s equations. The distribution of ava- Co(7.x,L)=([h(x,t+7,L) —h(x,t,L)]?);. (5
lanche durations is shown in Fig. 4. The distribution function
satisfies the scaling form presented above, with finite sizéigure 7 shows a scaling collapse plot ©§(7,L/2,L) for
scaling exponentg;=1.70+ 0.05 andr;=1.45+0.05. The different system sizes on the form
power-law exponent was estimated from the largest system
size to berr=1.15+0.1, which is also consistent with the Co(r,LI2L)=LPAnf (7L~ "), (6)
measured value g8t and vy : 1= B7/v1=1.20+0.05.

The pile is tilted in small increment$z. We have argued The correlation function crosses over from an increasing
that the average value @& is inversely proportional to the function for 7< 7, to a constant value for> 7. For larger
system sizd.. Figure 5 shows a scaling collapse plot of the , periodic oscillations of the height change the behavior of
probability densityP(éz,L) for a slope incremendz in a  the correlation function, but a reasonable data collapse was
system of size. The scaling collapse indicates that the den-obtained for smallr. The crossover time is a power of the
sity is on the form system sizeg,>L"n, with »,,=0.25+0.05. The width of the

active zone during avalanches is given by the standard de-
- - viation of the heighto,,a2%Cy(%,L/2,L)cLPn. The front
P(6z,L)=L"Ff,(5zL7"2), (4 width therefore scales with exponegt 8,/2=0.25+0.03,
which is the same as for the point driven Oslo model.
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FIG. 4. A plot of the probability distributior?(T,L) for an

avalanche duratiof in a system of sizé& for L=50, 100, 200, and FIG. 6. A plot of the heighh(x=L/2,L) at positionx=L/2 in a
400. pile of sizeL=100.
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10° ' - , ‘ ‘ ning model with quenched disorder which is pulled slowly at
a one end6]. Here, we demonstrate that the tilted Oslo model

oV can be mapped onto a uniformly driven interface depinning
model. Such a mapping is suggested already by the ava-
lanche exponent and the avalanche dimensi@ v in the
tited model, which are the same as for models of infinitely
slowly driven interface depinninfg].

The tilted model is described by the local slox,t),
which allows the calculation of the heigh(x,t) as a sum
over slopes from the outlet to position The interface de-
pinning model is described in terms of the heighx,t) of
the interface, which gives the position of the front at a time
We apply the mapping of Paczuski and Boettcf@F and
define the height(x,t) as the number of topplings in the
tited model in a column at position The local force on the
interface is defined to bE(x,t) =z(x,t) —z°(x,t). The dy-
namically varying critical slopeg®(x,t) can be written as a
00 100 10t 102 107 10 guenched noisez®(x,t)=n(x,H), since they are only

LY changed when the column at positigriopples, which cor-
responds to an increase lih The force is increased slowly
until it exceeds zero, which results in a depinning and dis-
placement of the interface. The heigHix,t) can be ex-
pressed through the heigh(x,t) of the sandpile,

C,(tL2L)

C(tLR.L)y LY

FIG. 7. A plot of the time correlation functio@,(7,L/2,L) for
the height of the pile at positiox=L/2 for piles of sizeL =50, 100,
200, and 400(a) shows the direct plot antb) a finite size scaling
date collapse. The collapse is satisfactory for smalhd displays a
crossover from an increasing function to a constant,atHowever, h _

e = X A X,0)=XxZ(t)+H(x—1t)—H(x,t). 7
for large 7 a periodic behavior is clearly evident and the finite size 0 (®) ( ) 0 @)

scaling breaks down. The heighth(x,t) at positionx is given by the general tilt of

A closer examination of the variation b{L/2t,L) shows the surface at positior, which is xZ(t) if the outlet is at
that the behavior is periodic in time. The periodic behavior ispositionx=0 andZ(t) is the cumulative slope increment at
clearer if time is measured in total tifi(t). The power spec- timet, and by the difference between the number of grains
trum S(f) shown in Fig. 8 shows a distinct peak fér toppling into and out of columx. The local slope can be
=1.00+0.01, which corresponds to a peridek 1 in units of  expressed as a difference in heighaéx,t) =h(x,t) —h(x
slope. The period does not change with system &izé +1t), which produces a simplified relation for the local
similar behavior is observed for the power spectrum for theforce
signal measured with as the time unit, but the peak in the

spectrum is smeared out. Since the periodicity occurs with a F(x,t)=—=2Z(t)+H(x—1t)—H(x,t)
constant period=1, the average period in units of tinhés
T=2/{5z)L. The period is proportional to the system size —HX D+ HX+ 10— 7(x,H), ®

when measured in units of tilt events. The two time scales . L - . )
therefore reveal a very different behavior in the thermody-Where the difference iHl is a finite difference formulation of
namic limitL—2: Measured in units of tilt events the period the second derivative

diverges, but measured in units of total tilt the period is )
constant. F(X,t)=—Z(t) + VH(x,t) = n(X,H). C)

Ill. INTERFACE DEPINNING This is exactly the form of the uniformly driven interface

) . depinning problem with quenched disord8t since »(x,H)
It has recgntly been argued that the_ point driven OSI.qs an uncorrelated random function representing quenched
model sandpile can be mapped onto a driven interface depin-

noise.
100 e We have therefore demonstrated that the tilted Oslo
model can be mapped onto a slowly driven interface depin-
1072} ning model with quenched noise. The mapping is also sup-
o .4 ported by the exponents characterizing the dynamics. For the
s 0 tilted Oslo model the avalanche exponentris 1.11+0.02,
10661 whereas for the interface depinning model ir-1 dimen-
sion it is 7=1.12[22]. The finite size scaling exponentis
108 v=2.25+0.03 for the Oslo model an®=2.23+0.03 for

06 08 10 12 14 16 18 the interface depinning modgb]. This implies that the in-
f terface roughness jg=D — 2, which is directly measured in
FIG. 8. A plot of the power spectrui®(f) of the pile height at  the tilted Oslo model to bg=0.25+0.05. Also the distri-
positionx=L/2 for a system of size =100. The spectrum shows a bution of avalanche duration$, displayed similar behavior
clear peak af =1.00+0.01 indicating a periodicity with period  in the two models. For the tilted Oslo model, the cutoff for
=1. Time is measured in units of slope. the avalanche duration scaled with system size with expo-
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FIG. 9. An illustration of the one-dimensional earthquake 10 10 106 16-4 10'-2 100 102
model. A set of interconnected blocks rests on a supporting plate N L2
and is pulled by springs connected to a slowly driven plate above. o
The blocks experience static friction forc& to the supporting FIG. 10. A plot of the probability distributio®(N,L) of the
plate. number of displacement events, in a one-dimensional earthquake

model of sizeL for L=50, 100, 200, and 400. The best data col-
lapse produced the finite size scaling exponerys-2.25+0.02
and By=2.50+0.05. The distribution is consistent with a power
law with exponentr=1.10+0.05.

nentvy=1.45*+0.05, which is in good correspondence with
the valuez=1.42 found numerically for the constant force
depinning transitiorj22].

dissipation in the tilted Oslo model, and the avalanche ex-
IV. EARTHQUAKE MODELS ponent and the finite size scaling behavior are the same as for
the tilted Oslo model. We conclude that the tilted Oslo model
Slowly driven interface depinning models have recentl)_/can be mapped onto a one-dimensional earthquake model
been shown to behave as simple earthquake models Withith dynamically varying static friction thresholds. Simula-
random static friction thresholds’,23]. Here, we demon- tjons of non-conservative versions of the model correspond-
strate that the tilted Oslo model can be mapped onto a similghg to < 1/2 did not produce a critical behavior. A lower
earthquake model, corresponding to a one-dimensiongjajye of « introduced a characteristic length scale that was
Olami-Feder-ChristensefOFC) model [3] with random  yefiected in the distribution of avalanche sizes. The model is

static friction thresholds. therefore only critical in the conservative limit,=1/2.
Several theoretical models have been used to address the

stick-slip dynamics of tectonic plates in the earth’'s crust
[9,24—-24. The one-dimensional OFC model consists of a
sequence of blocks interconnected by springs resting on a We have studied a simple model of a slowly tilted pile of
supporting plate. The blocks are pulled by weak springgrains based on the Oslo model sandpile. The model dis-
coupled to another plate, representing the slow buildup oplayed power-law distributed energy dissipation events with
stress within or between two surfaces as illustrated in Fig. 9an exponentr=1.11+0.02. Consequently, the tilted Oslo
The blocks are attached to the supporting substrate by statinodel represents a different universality class than the point
friction forces. When a static friction force exceeds its maxi-driven Oslo model, for whiclr=1.53+0.02. The universal-
mum threshold, the block slides to a position of zero forcejty class therefore depends on the external driving. However,
increasing the forces on the surrounding blocks. A singlehe finite size scaling exponentis the same for both mod-
displacement can therefore lead to an avalanche of displaceis.
ments. This corresponds to a one-dimensional version of the The behavior of the system is characterized by two time
OFC model, where the avalanche dynamics is given in termscales, the number of tilt everitsind the total tiltZ(t). The
of the static friction forcé=; on each block. WheR;>F{ an  pile is characterized by periodic fluctuations in the height
avalanche occurs and the forces are redistributed on theith a periodZ=1, but the period measured in tilt events is
neighboring blocksF;..,—F;+1+ «F; andF;—0. The fac- proportional toL. Large systems must therefore be driven at
tor « is introduced since the redistribution of forces does no@a slower rate in order to retain a critical behavior. It is im-
have to be conservative. Here, we only address the cag®rtant to consider this relation between physical time, mea-
where a=1/2, which corresponds to the conservative casesured byZ(t), and the event timein experimental studies at
When the rightmostend block ati=L is relaxed, all the finite tilting rates. We observe that the system displays self-
force is transferred to the neighboring bloék=(L—1). The organized critical behavior even though periodic oscillations
force transferred out of the systemiat1 is lost. The system are observed for finite system sizes.
is slowly driven: the forces are increased slowly until an The temporal evolution of the pile was characterized by
avalanche occurs. the time correlation function of the height. The crossover
The description of the model is almost identical to thetime 7, is interpreted as the time until a large avalanche
description of the Oslo model when the static friction thresh+eachesx=L/2, and significantly changes the profile. The
olds are chosen to be dynamically varying random variablescaling behaviorr,«L"h, with v,=0.25+0.05, is signifi-
that are changed after each block displacement. The diffecantly different from the results of the point driven Oslo
ences are in the block relaxation, which is to zero force, thenodel, for whichv,,=1.25+0.05. The difference is due to
boundary conditions at=L, and the possible introduction of the different driving conditions. Since the avalanches in the
nonconservative dynamics. The similarity is confirmed bytilted Oslo model are triggered all along the profile, more
simulations of this system as shown in Fig. 10. The avaavalanches reack=L/2. However, the surface roughnegs
lanche size is measured as the number of block relaxationgs the same for both models.
which corresponds to the number of topplir(gs the energy The tilted sandpile model can be mapped onto an infi-

V. CONCLUSIONS
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nitely slowly, uniformly driven interface depinning model. tion thresholds. This supports the notion of a broad univer-
The results from the (% 1)-dimensional driven interface de- sality in self-organized critical systems observed by Paczuski
pinning models can therefore be applied to the tilted sandpilend Boettchef6].

model. This might allow a discussion of the behavior at finite
tilting rates without a direct simulation of the tilted model. It
would also be interesting to test if a similar mapping also can
relate higher-dimensional systems of the Oslo model and the | thank Maya Paczuski, Kim Christensen, and Jens Feder
driven interface depinning model. The tilted sandpile modeffor stimulating discussions. The project was supported by
can also be mapped onto a one-dimensional slider-blochFR, the Norwegian Research Council, through a grant of
model of earthquakes with dynamically varying static fric- computer time.
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