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Tilted sandpiles, interface depinning, and earthquake models

A. Malthe-So”renssen
Department of Physics, University of Oslo, Box 1048 Blindern, N-0316 Oslo, Norway

~Received 9 June 1998!

A model of a slowly tilted one-dimensional sandpile with dynamically varying critical slopes is studied. The
energy dissipation events are found to be power-law distributed with exponentt51.1160.02 and obey finite
size scaling. The model represents a different universality class than the corresponding point driven models.
However, the finite size scaling exponentD and the surface roughness exponent are the same for both driving
conditions. The pile height exhibits periodic oscillations, but the oscillation period measured in tilt events
diverges as system size increases because the average tilt increment between avalanches is inversely propor-
tional to system size. We demonstrate that the model can be mapped onto a slowly driven interface depinning
model and a one-dimensional spring-block model with dynamically varying friction thresholds, supporting a
broad universality relating different models of self-organized critical phenomena.@S1063-651X~99!12802-2#

PACS number~s!: 64.60.Ht, 05.40.2a, 05.70.Ln
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I. INTRODUCTION

Slowly driven granular systems, such as slowly tilt
piles of sand, have served as useful examples to illust
how some slowly driven dissipative systems evolve into
stationary state characterized by power-law fluctuations
the state variables. The self-tuning of the system to a crit
state was termed self-organized criticality~SOC! @1,2#, and
models based on similar ideas have been used to des
power-law fluctuations in phenomena such as earthqua
@3#, evolution@4#, and interface growth@5#. Recently, a direct
mapping between models of different physical phenom
has demonstrated a broad universality relating sandpile m
els, interface depinning models, and earthquake train mo
@6,7# provided specific boundary and driving conditions we
applied. It is important to develop similar corresponden
also for other models and driving conditions in order to u
derstand the connection between self-organized critical
havior in different systems. In this article we study a simp
model of a slowly tilted sandpile and show that the behav
is equivalent to the behavior in uniformly driven interfa
depinning models @8# and one-dimensional Burridge
Knopoff @9# earthquake models with dynamically varyin
static friction coefficients.

One of the first experiments to study the applicability
SOC to granular systems was performed by slowly rotatin
semicylinder half filled with grains@10#. The distribution of
grains flowing out of the system clearly did not suppor
power-law interpretation, and the system was character
by a periodic cycling between two angles, which was int
preted as inconsistent with the hypothesis of SOC. The
periments, however, did not address the potential energ
the system, which is the quantity expected to display pow
law fluctuations. The internal dynamics were first measu
with sufficient resolution for piles of rice@11#. Self-
organized critical behavior was observed for long-grain
rice, but a characteristic avalanche size appeared for rou
rice, indicating that SOC may be relevant for the descript
of granular systems, but it is not the universal behavior.

Several features of the rice pile experiments, such as
distribution of transit times@12# and the surface roughnes
PRE 591063-651X/99/59~4!/4169~6!/$15.00
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@13#, were well described by the Oslo model sandpile@12#.
However, the model did not reproduce the exponent of
avalanche distribution. In the Oslo model the pile is rep
sented by a sequence of columns. If the local slope excee
critical value that depends on the local packing configu
tion, the column topples. The grain is transferred to the n
column and a new, random value of the critical slope
chosen, representing a new local packing configuration.
Oslo model can be directly extended to study a slowly tilt
system. It is not an entirely realistic model of a tilted gran
lar pile, since in a real pile also the orientations of the gra
and therefore the packing stabilities change when the pil
tilted. However, such a model is interesting from a theore
cal point of view, because a change in driving conditions
expected to change the scaling behavior of the model.

Tilted granular piles have been studied extensively b
experimentally and theoretically. In addition to the expe
ment by Jaegeret al. @10#, similar results were found by
Bretz et al. @14# by tilting a box of grains. The transition to
avalanche behavior with rotation speed has also been
dressed@15#. However, no systematic experimental stud
of the internal avalanches have been performed to estab
or contradict a scaling behavior. Theoretical studies h
been made based on a continuum description@16,17#, on
grain simulations@18#, and on cellular models@19#. The ob-
served behavior depended on the modeling approach, bu
applicability of the models cannot be evaluated withou
comparable experimental study.

We have applied the Oslo model to study a slowly tilt
pile of grains. The Oslo model has an indirect experimen
basis because it reproduces features of slowly driven pile
rice. The tilted sandpile model produces power-law distr
uted energy dissipation events with an exponentt51.11
60.02. This indicates that the model is in a different univ
sality class than the point driven Oslo model. However,
scaling of the active zone and the finite size scaling expon
are the same for both models. The height of the pile displ
periodic fluctuations with a constant period of one measu
in the total tilt of the pile, but the period increases linea
with system size when measured in units of tilt events. W
show that the model can be mapped onto a uniformly driv
4169 ©1999 The American Physical Society
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4170 PRE 59A. MALTHE-SO”RENSSEN
interface depinning model and a one-dimensional earthqu
model with dynamically varying frictional thresholds
thereby confirming a broad universality between these s
organized critical phenomena.

II. TILTED SANDPILE MODEL

The tilted sandpile model is defined in terms of the lo
slopes of the pile surface,zi , at positionsi ranging from the
top of the pile ati 51 to the outlet ati 5L11. The height of
the pile at a positioni is given by the sum of local slopes. A
column becomes unstable and topples if the local slope
ceeds a critical valuezi

c . During toppling, a new value forzi
c

is chosen, and a grain is transferred down the pile, resul
in a redistribution of slopes:zi→zi22, zi 61→zi 6111.
Grains that move out of the pile~to position i 5L11) are
removed. All unstable neighbors are also toppled, and
process is repeated until all sites are stable. The topp
dynamics is identical to the Oslo model sandpile@12#, how-
ever, the driving conditions are different for the tilted mod
A slow tilting is implemented by a gradual, uniform increa
of all slopes until a site becomes unstable and topples.
subsequent topplings are resolved before the system is t
again, ensuring that the pile is infinitely slowly driven. Th
values of the critical slopes are real numbers chosen
domly between 1 and 2. A change in the range of the crit
slopes only implies a rescaling of the vertical axis and d
not produce a significant change in behavior.

The avalanche behavior of the system is characterized
the energy dissipationE, the number of grains leaving th
system,D, called the drop number, and the duration of t
avalanches measured as the number of generations of
pling events,T. The temporal development of the system
characterized by the slope incrementsdz, between each ava
lanche. The system has two time scales, the timet, measured
in the number of tilt events, and the total tiltZ(t),

Z~ t !5(
i 51

t

dzi . ~1!

The spatiotemporal development of the pile is stud
through the time development of the height fieldhi(t) as a
function of both timet, and total tiltZ(t).

Figure 1~a! shows a plot ofP(E,L), the probability den-
sity for energy dissipation eventsE in a system of sizeL.
The distribution is consistent with a power law with a fini
size cutoff that increases systematically withL. The finite
size scaling plot in Fig. 1~b! shows that the density can b
written on a scaling form

P~E,L !5L2b f ~EL2n!, ~2!

where f (x) is a power lawx2t for x,x0 and a cutoff func-
tion for x.x0 . The best data collapse was found forb
52.560.03 andn52.2560.03. For the largest system siz
the power-law exponent was found to bet51.1060.03. The
finite size scaling exponents and the power-law exponent
related through scaling relations. The normalization of
probability density implies thatb.n and thatt5b/n. The
finite size scaling collapse therefore implies that the pow
law exponent ist51.1160.02, which is consistent with th
ke
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value found by direct measurement. Another scaling relat
can be found from the average energy dissipation@20#. For a
pile tilted at an angledz!z, wherez is the slope of the pile,
the energy increase is proportional todzL3. In a stationary
state, the average energy increment must equal the ave
dissipated energy,̂E&}^dz&L3. The average slope incre
ments can be calculated exactly if we assume thatzi

c2zi are
independent random variables with a uniform distributi
~see, for example, Ref.@21# for details! giving ^dz&}L21.
We expect a similar behavior for the tilted pile and sho
further on that this is indeed observed for the simulated p
The average dissipated energy can also be calculated
the scaling form ofP(E,L):^E&}L2n2b. The stationarity of
the pile therefore implies that 2n2b52. This is consistent
with the results found for the data collapse. The power-l
exponent can be found directly fromn:

t5
2n22

n
51.1160.02. ~3!

Figure 2 shows a finite size scaling plot of the distributi
of drop events,P(D,L), for different system sizes. The ex

FIG. 1. A plot of the probability densityP(E,L) for an energy
dissipation eventE in a system of sizeL. ~a! shows a direct plot for
L550, 100, 200, and 400.~b! shows a finite size scaling data co
lapse on the formP(E,L)5L2b f (EL2n).

FIG. 2. A scaling data collapse plot of the probability dens
P(D,L) for a drop event of sizeD in a system of sizeL for L
550, 100, 200, and 400.
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ponents that produced the best data collapse werebD
51.2560.03 andnD51.2560.03. The distribution is ap
proximately consistent with an exponential distribution. T
finite size scaling exponentnD is related to the exponent fo
the energy dissipation events,nD5n21, as expected from
simulations of similar models@20#. It is important to realize
that P(D,L) is a conditional probability density and repr
sents the probability of a drop of sizeD given that a drop
occurs. The probability of the drop event is a decreas
function of L. Figure 3 shows that the probability of a dro
eventpdrop decreases as a power law with system sizepdrop
}L2jD, wherejD50.2560.05.

The avalanches were also characterized by the duratio
avalanches, measured as the number of toppling cycleT.
This is, however, an artificial time scale, since the relaxat
dynamics does not include a coupling to a physical ti
scale through Newton’s equations. The distribution of a
lanche durations is shown in Fig. 4. The distribution functi
satisfies the scaling form presented above, with finite s
scaling exponentsbT51.7060.05 andnT51.4560.05. The
power-law exponent was estimated from the largest sys
size to betT51.1560.1, which is also consistent with th
measured value ofbT andnT :tT5bT /nT51.2060.05.

The pile is tilted in small increments,dz. We have argued
that the average value ofdz is inversely proportional to the
system sizeL. Figure 5 shows a scaling collapse plot of t
probability densityP(dz,L) for a slope incrementdz in a
system of sizeL. The scaling collapse indicates that the de
sity is on the form

P~dz,L !5L2bzf z~dzL2nz!, ~4!

FIG. 3. A plot of the probability of a drop event,pdrop, as a
function of system sizeL. The behavior is consistent with a powe
law with exponentjD50.2560.05 as illustrated with the dotte
line.

FIG. 4. A plot of the probability distributionP(T,L) for an
avalanche durationT in a system of sizeL for L550, 100, 200, and
400.
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where f z(x) is approximately an exponential function, an
the best data collapse is obtained forbz5nz521.060.1,
which implies that̂ dz&}Lnz, consistent with the prediction
above. Since the average slope increment decreases with
tem size, the two time scalest andZ(t) also change relative
to each other when the system size is increased. The num
of time steps,t, needed to increase the slope by one is p
portional to the system sizeL.

The dynamical evolution of the pile is characterized
the temporal development of height of the profile,h(x,t,L),
as shown in Fig. 6 forx5L/2. The heighth(x5L/2,t,L) is
an intermittent signal with a variety of small and larg
changes. However, the variation of the curve is restricted
a length scale that depends on the system size. This de
dence is characterized by the two-point time correlat
function

C2~t,x,L !5^@h~x,t1t,L !2h~x,t,L !#2& t . ~5!

Figure 7 shows a scaling collapse plot ofC2(t,L/2,L) for
different system sizes on the form

C2~t,L/2,L !5Lbhf h~tL2nh!. ~6!

The correlation function crosses over from an increas
function for t,th to a constant value fort.th . For larger
t, periodic oscillations of the height change the behavior
the correlation function, but a reasonable data collapse
obtained for smallt. The crossover time is a power of th
system size,th}Lnh, with nh50.2560.05. The width of the
active zone during avalanches is given by the standard
viation of the height,sh ,sh

2}C2(`,L/2,L)}Lbh. The front
width therefore scales with exponentx5bh/250.2560.03,
which is the same as for the point driven Oslo model.

FIG. 5. A finite size scaling plot of the probability densit
P(dz,L) for the slope increment to bedz between two successiv
avalanches in a system of sizeL for L550, 100, 200, and 400.

FIG. 6. A plot of the heighth(x5L/2,L) at positionx5L/2 in a
pile of sizeL5100.
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A closer examination of the variation ofh(L/2,t,L) shows
that the behavior is periodic in time. The periodic behavio
clearer if time is measured in total tiltZ(t). The power spec-
trum S( f ) shown in Fig. 8 shows a distinct peak forf
51.0060.01, which corresponds to a periodZ51 in units of
slope. The period does not change with system sizeL. A
similar behavior is observed for the power spectrum for
signal measured witht as the time unit, but the peak in th
spectrum is smeared out. Since the periodicity occurs wi
constant periodZ51, the average period in units of timet is
T5Z/^dz&}L. The period is proportional to the system si
when measured in units of tilt events. The two time sca
therefore reveal a very different behavior in the thermo
namic limit L→`: Measured in units of tilt events the perio
diverges, but measured in units of total tilt the period
constant.

III. INTERFACE DEPINNING

It has recently been argued that the point driven O
model sandpile can be mapped onto a driven interface de

FIG. 7. A plot of the time correlation functionC2(t,L/2,L) for
the height of the pile at positionx5L/2 for piles of sizeL550, 100,
200, and 400.~a! shows the direct plot and~b! a finite size scaling
date collapse. The collapse is satisfactory for smallt and displays a
crossover from an increasing function to a constant atth . However,
for larget a periodic behavior is clearly evident and the finite s
scaling breaks down.

FIG. 8. A plot of the power spectrumS( f ) of the pile height at
positionx5L/2 for a system of sizeL5100. The spectrum shows
clear peak atf 51.0060.01 indicating a periodicity with periodz
51. Time is measured in units of slope.
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ning model with quenched disorder which is pulled slowly
one end@6#. Here, we demonstrate that the tilted Oslo mod
can be mapped onto a uniformly driven interface depinn
model. Such a mapping is suggested already by the a
lanche exponentt and the avalanche dimensionD5n in the
tilted model, which are the same as for models of infinite
slowly driven interface depinning@8#.

The tilted model is described by the local slopesz(x,t),
which allows the calculation of the heighth(x,t) as a sum
over slopes from the outlet to positionx. The interface de-
pinning model is described in terms of the heightH(x,t) of
the interface, which gives the position of the front at a timet.
We apply the mapping of Paczuski and Boettcher@6# and
define the heightH(x,t) as the number of topplings in th
tilted model in a column at positionx. The local force on the
interface is defined to beF(x,t)5z(x,t)2zc(x,t). The dy-
namically varying critical slopeszc(x,t) can be written as a
quenched noisezc(x,t)5h(x,H), since they are only
changed when the column at positionx topples, which cor-
responds to an increase inH. The force is increased slowly
until it exceeds zero, which results in a depinning and d
placement of the interface. The heightH(x,t) can be ex-
pressed through the heighth(x,t) of the sandpile,

h~x,t !5xZ~ t !1H~x21,t !2H~x,t !. ~7!

The heighth(x,t) at positionx is given by the general tilt of
the surface at positionx, which is xZ(t) if the outlet is at
positionx50 andZ(t) is the cumulative slope increment a
time t, and by the difference between the number of gra
toppling into and out of columnx. The local slope can be
expressed as a difference in heights,z(x,t)5h(x,t)2h(x
11,t), which produces a simplified relation for the loc
force

F~x,t !52Z~ t !1H~x21,t !2H~x,t !

2H~x,t !1H~x11,t !2h~x,H !, ~8!

where the difference inH is a finite difference formulation of
the second derivative

F~x,t !52Z~ t !1¹2H~x,t !2h~x,H !. ~9!

This is exactly the form of the uniformly driven interfac
depinning problem with quenched disorder@8# sinceh(x,H)
is an uncorrelated random function representing quenc
noise.

We have therefore demonstrated that the tilted O
model can be mapped onto a slowly driven interface dep
ning model with quenched noise. The mapping is also s
ported by the exponents characterizing the dynamics. For
tilted Oslo model the avalanche exponent ist51.1160.02,
whereas for the interface depinning model in 111 dimen-
sion it is t.1.12 @22#. The finite size scaling exponentn is
n52.2560.03 for the Oslo model andD52.2360.03 for
the interface depinning model@6#. This implies that the in-
terface roughness isx5D22, which is directly measured in
the tilted Oslo model to bex50.2560.05. Also the distri-
bution of avalanche durations,T, displayed similar behavior
in the two models. For the tilted Oslo model, the cutoff f
the avalanche duration scaled with system size with ex
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nentnT51.4560.05, which is in good correspondence wi
the valuez.1.42 found numerically for the constant forc
depinning transition@22#.

IV. EARTHQUAKE MODELS

Slowly driven interface depinning models have recen
been shown to behave as simple earthquake models
random static friction thresholds@7,23#. Here, we demon-
strate that the tilted Oslo model can be mapped onto a sim
earthquake model, corresponding to a one-dimensio
Olami-Feder-Christensen~OFC! model @3# with random
static friction thresholds.

Several theoretical models have been used to addres
stick-slip dynamics of tectonic plates in the earth’s cr
@9,24–26#. The one-dimensional OFC model consists o
sequence of blocks interconnected by springs resting o
supporting plate. The blocks are pulled by weak sprin
coupled to another plate, representing the slow buildup
stress within or between two surfaces as illustrated in Fig
The blocks are attached to the supporting substrate by s
friction forces. When a static friction force exceeds its ma
mum threshold, the block slides to a position of zero for
increasing the forces on the surrounding blocks. A sin
displacement can therefore lead to an avalanche of displ
ments. This corresponds to a one-dimensional version of
OFC model, where the avalanche dynamics is given in te
of the static friction forceFi on each block. WhenFi.Fi

c an
avalanche occurs and the forces are redistributed on
neighboring blocks:Fi 61→Fi 611aFi andFi→0. The fac-
tor a is introduced since the redistribution of forces does
have to be conservative. Here, we only address the
wherea51/2, which corresponds to the conservative ca
When the rightmost~end! block at i 5L is relaxed, all the
force is transferred to the neighboring block (i 5L21). The
force transferred out of the system ati 51 is lost. The system
is slowly driven: the forces are increased slowly until
avalanche occurs.

The description of the model is almost identical to t
description of the Oslo model when the static friction thre
olds are chosen to be dynamically varying random variab
that are changed after each block displacement. The di
ences are in the block relaxation, which is to zero force,
boundary conditions ati 5L, and the possible introduction o
nonconservative dynamics. The similarity is confirmed
simulations of this system as shown in Fig. 10. The a
lanche size is measured as the number of block relaxati
which corresponds to the number of topplings~or the energy

FIG. 9. An illustration of the one-dimensional earthqua
model. A set of interconnected blocks rests on a supporting p
and is pulled by springs connected to a slowly driven plate abo
The blocks experience static friction forcesFi to the supporting
plate.
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dissipation! in the tilted Oslo model, and the avalanche e
ponent and the finite size scaling behavior are the same a
the tilted Oslo model. We conclude that the tilted Oslo mo
can be mapped onto a one-dimensional earthquake m
with dynamically varying static friction thresholds. Simula
tions of non-conservative versions of the model correspo
ing to a,1/2 did not produce a critical behavior. A lowe
value of a introduced a characteristic length scale that w
reflected in the distribution of avalanche sizes. The mode
therefore only critical in the conservative limit,a51/2.

V. CONCLUSIONS

We have studied a simple model of a slowly tilted pile
grains based on the Oslo model sandpile. The model
played power-law distributed energy dissipation events w
an exponentt51.1160.02. Consequently, the tilted Osl
model represents a different universality class than the p
driven Oslo model, for whicht51.5360.02. The universal-
ity class therefore depends on the external driving. Howe
the finite size scaling exponentn is the same for both mod
els.

The behavior of the system is characterized by two ti
scales, the number of tilt eventst and the total tiltZ(t). The
pile is characterized by periodic fluctuations in the heig
with a periodZ51, but the period measured in tilt events
proportional toL. Large systems must therefore be driven
a slower rate in order to retain a critical behavior. It is im
portant to consider this relation between physical time, m
sured byZ(t), and the event timet in experimental studies a
finite tilting rates. We observe that the system displays s
organized critical behavior even though periodic oscillatio
are observed for finite system sizes.

The temporal evolution of the pile was characterized
the time correlation function of the height. The crossov
time th is interpreted as the time until a large avalanc
reachesx5L/2, and significantly changes the profile. Th
scaling behaviorth}Lnh, with nh50.2560.05, is signifi-
cantly different from the results of the point driven Os
model, for whichnh51.2560.05. The difference is due to
the different driving conditions. Since the avalanches in
tilted Oslo model are triggered all along the profile, mo
avalanches reachx5L/2. However, the surface roughnessx
is the same for both models.

The tilted sandpile model can be mapped onto an i

te
e.

FIG. 10. A plot of the probability distributionP(N,L) of the
number of displacement events,N, in a one-dimensional earthquak
model of sizeL for L550, 100, 200, and 400. The best data c
lapse produced the finite size scaling exponentsnN52.2560.02
and bN52.5060.05. The distribution is consistent with a pow
law with exponentt51.1060.05.
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nitely slowly, uniformly driven interface depinning mode
The results from the (111)-dimensional driven interface de
pinning models can therefore be applied to the tilted sand
model. This might allow a discussion of the behavior at fin
tilting rates without a direct simulation of the tilted model.
would also be interesting to test if a similar mapping also c
relate higher-dimensional systems of the Oslo model and
driven interface depinning model. The tilted sandpile mo
can also be mapped onto a one-dimensional slider-b
model of earthquakes with dynamically varying static fr
et

.

le

n
e
l
k

tion thresholds. This supports the notion of a broad univ
sality in self-organized critical systems observed by Paczu
and Boettcher@6#.
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